Expression of different types of inward rectifier currents confers specificity of light and dark responses in type A and B photoreceptors of Hermissenda.
نویسندگان
چکیده
Each eye of the mollusc Hermissenda consists of five photoreceptors, two type A and three type B cells. Type A cells are quiescent, whereas B cells are spontaneously active in the dark. Differences in the intrinsic membrane properties of type A and B photoreceptors were studied using voltage- and current-clamp techniques. The current density of a Ni2+-sensitive, low-voltage activated Ca2+ current was similar in the two cell types. However, type B cells express an inward rectifier current (Ih) that has different permeation and pharmacological properties from the inward rectifier current in type A cells. The current in the B cells was time-dependent and was blocked by Cs+. Na+ and K+ were the charge carriers for Ih. The inward rectifier current in A cells (IK1) was time-independent, was selectively permeable to K+, and was blocked by Ba2+. Ni2+ reduced the spontaneous spike activities of type A and B cells, whereas Cs+ produced membrane hyperpolarization and reduced the spike activities of dark-adapted B cells. The application of both Cs+ and Ni2+ completely blocked dark-adapted spontaneous activities of B cells. Moreover, Ba2+ increased the excitability of type A cells but not B cells. Hence, differential expression of the two distinct inward rectifiers found in type A and B cells contributes to differences in their intrinsic membrane properties. Because changes in the excitability of the two cell types are correlates of conditioning in Hermissenda, modulation of these underlying currents may play a major role during conditioning-induced plasticity.
منابع مشابه
Ionic currents underlying difference in light response between type A and type B photoreceptors.
In Hermissenda crassicornis, the memory of light associated with turbulence is stored as changes in intrinsic and synaptic currents in both type A and type B photoreceptors. These photoreceptor types exhibit qualitatively different responses to light and current injection, and these differences shape the spatiotemporal firing patterns that control behavior. Thus the objective of the study was t...
متن کاملExistence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملEffects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملIonic basis of learning-correlated excitability changes in Hermissenda type A photoreceptors.
Repeated pairings of light and rotation (conditioning) result in persistent changes in excitability of Hermissenda type B and A photoreceptors, which are correlated with pairing-specific reductions in phototactic behavior. Although considerable attention has been devoted to characterization of conditioning-produced neurophysiological changes that occur in type B cells, less information is avail...
متن کاملVoltage-dependent calcium and calcium-activated potassium currents of a molluscan photoreceptor.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium curren...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 16 شماره
صفحات -
تاریخ انتشار 1998